Machine,更早称作:n RISC Machine),是一个32位精简指令集(RISC)设计。由于节能的特点,ARM处理器非常适用于移动通讯领域,符合其主要设计目标为低耗电的特性。
在今日,ARM家族占了所有32位嵌入式处理器75%的比例[1],使它成为占全世界最多数的32位架构之一。ARM处理器可以在很多消费性电子科技类产品上看到,从可携式装置(PDA、移动电话、多媒体播放器、掌上型电子游戏,和计算机)到电脑外设(硬盘、桌上型路由器)甚至在导弹的弹载计算机等军用设施中都有他的存在。
在此还有一些基于ARM设计的派生产品,重要产品还包括Marvell的XScale架构和德州仪器的OMAP系列。
ARM是Advanced RISC Machines的缩写。ARM架构是一个32位精简指令集(RISC)处理器架构,其广泛地使用在许多嵌入式系统设计。
迄今为止(2016年)ARM架构已发展到了第八代ARMv8,在了解最新架构之前有必要重温一下ARM架构发展史:
1985年,ARMv1架构诞生,该版架构只在原型机ARM1出现过,只有26位的寻址空间(64MB),没有用于商业产品。
1986年,ARMv2架构诞生,首颗量产的ARM处理器ARM2就是基于该架构,包含了对32位乘法指令和协处理器指令的支持,但同样仍为26位寻址空间。其后还出现了变种ARMv2a,ARM3即采用了ARMv2a,是第一片采用片上Cache的ARM处理器。
1990年,ARMv3架构诞生,第一个采用ARMv3架构的微处理器是ARM6(610)以及ARM7,其具有片上高速缓存、MMU和写缓冲,寻址空间增大到32位(4GB)。
1993年,ARMv4架构诞生,这个架构被普遍的使用,ARM7(7TDMI)、ARM8、ARM9(9TDMI)和StrongARM采用了该架构。ARM在这个系列中引入了T变种指令集,即处理器可工作在Thumb状态,增加了16位Thumb指令集。
1998年,ARMv5架构诞生,ARM7(EJ)、ARM9(E)、ARM10(E)和Xscale采用了该架构,这版架构改进了ARM/Thumb状态之间的切换效率。此外还引入了DSP指令和支持JAVA。
2001年,ARMv6架构诞生,ARM11采用的是该架构,这版架构强化了图形处理性能。通过追加有效进行多媒体处理的SIMD将语音及图像的处理功能大幅度的提升。此外ARM在这个系列中引入了混合16位/32位的Thumb-2指令集。
2004年,ARMv7架构诞生,从这样一个时间段开始ARM以Cortex来重新命名处理器,Cortex-M3/4/7,Cortex-R4/5/6/7,Cortex-A8/9/5/7/15/17都是基于该架构。该架构包括NEON™技术扩展,可将DSP和媒体处理吞吐量提升高达400%,并提供改善的浮点支持以满足下一代3D图形和游戏以及传统嵌入式控制应用的需要。
2007年,在ARMv6基础上衍生了ARMv6-M架构,该架构是专门为低成本、高性能设备而设计,向以前由8位设备占主导地位的市场提供32位功能强大的解决方案。Cortex-M0/1/0+即采用的该架构。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。举报投诉
历史。 机器学习的现状 机器学习已成为AI的重要分支,也是当下最火热的研究领域之一。在计算机科学领域
的嵌入式微控制器。在本文中,我们将深入探讨RH850微控制器的特点、应用和
实际上就是CISC与RISC之间的区别,很多用户不理解它们两个之间到底有哪些区别,实际就是它们的领域不太相同,然后追求也不相同。
指的是什么?小编选出了几个精彩回答!希望对嵌友们在选择设计电路时有所帮助~
公司是全球领先的半导du体知识产权 (IP) 提供商。全世界超过95%的智能手机和平板电脑都采用
市场的龙头位置。随着RISC-V生态的持续扩展,巨头厂商和小公司的不断入局,
图,最后从性能、扩展能力、操作系统的兼容性、软件开发的方便性及可使用工具的多样性及功耗这五个方面详细的对比了
9到下一代的Cortex-A15,已经经历了多次的更新换代,每一次的升级都带来了性能的大幅度的提高,那么它们各自的性能到底怎么样呢?今天,笔者就和大家一起,聊一聊